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BACKGROUND 

OPNAVINSTR 8023.2A assigns NAVFAC the responsibility to develop 

standards, criteria, instructions, and manuals needed to plan and design 

facilities related to explosives operations, and to sponsor appropriate 

engineering investigations and research. Certain structural performance 

criteria, intended to protect people and property from sources of potential 

explosives, require upgrading to fully utilize the inherent performance 

capability of the structure. 

This work effort is directed toward improving techniques for pre¬ 

dicting the dynamic response and behavior of reinforced concrete slabs 

that are a basic structural element in blast resistant construction. 

The safety and cost of ordnance facilities depends heavily on the accu¬ 

racy of methods for predicting the structural response. Finite element 

technology, although perhaps complex in its applications, has greatly 

improved the accuracy of structural computations, allowing the computer 

to be utilized to analyze more refined (structural) mathematical models 

than could previously be done by hand computation. 

A major problem in the use of computer analysis programs such as 

the various finite element programs is the characterization of the 

composite steel-concrete interaction in reinforced-concrete structural 

elements. This nonlinear behavior is very difficult to approximate and 

idealize to suit the various material description models in use. Of 

particular importance is the accurate representation of structural 

stiffness (a function of modulus of elasticity and moment of inertia) as 

a function of loading. The stiffness function is a prime factor that 

governs the deflection of the structural system. Most elements used to 

represent reinforced concrete attempt to represent the total composite 

behavior rather than the behavior of both reinforcing and concrete. 
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Under the action of external loads,'a structural element is deformed 

causing internal forces in the element. The function of these internal 

forces is to resist the movement of the mass; hence the sum of the 

internal forces is defined as the resistance. The resistance of a 

structural element is a reactive force associated with the deflection of 

the element produced by the applied load. It is convenient to consider 

the resistance as an equivalent load in the same manner as the applied 

load, but opposite in direction. The variation of the resistance versus 

displacement is expressed by a resistance-deflection function and may be 

represented as in Figure 1. 

Depending upon the magnitudes of the dynamic load and deflections 

permitted, one of three types of reinforced concrete cross sections can 

result: (1) Type I where the concrete cover over the reinforcement on 

both surfaces of the element remains intact, (2) Type II where the 

concrete cover over the compression reinforcement is crushed but still 

connected to the element, and (3) Type III where the concrete cover on 

both surfaces of the element is disengaged. All three cross sections 

are illustrated in Figure 2 (Reference 1). 

Elements which are designed using the full cross section (Type I) 

usually are encountered in those structures or portions of structures 

designed to resist the blast output at the intermediate- and/or low- 

pressure design ranges. This type of cross section is utilized in 

elements with maximum deflections corresponding to support rotations 

less than 2 degrees. Type I elements may be reinforced on either one or 

both faces. 

Elements which undergo support rotations greater than 2 degrees 

exhibit crushing of the concrete cover over the compression reinforcement 

(Type II). Type II sections, which sustain crushing of the concrete 

without any additional disengagement of the concrete cover, are encountered 

in structures at the intermediate- and low-pressure design ranges when 

the maximum deflections conform to support rotations greater than 2 

degrees but less than 5 degrees. However, shear reinforcement is required. 

Type III elements require special design. Sufficient compression 

reinforcement must be available to fully develop the tension steel 
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(tension and compression reinforcement must be equal), and lacing rein¬ 

forcement must be present to prevent buckling of the compression steel 

and disengagement of the concrete between the layers of reinforcement. 

Elements of Type III design with lacing may undergo support rotations to 

12 degrees. 

It is of interest to examine the load characteristics of components 

of reinforced concrete. Figure 3 gives typical stress strain curves for 

reinforcing steel and Figure 4 gives a typical stress strain curve for 

concrete (Reference 2). Such observed behavior is the basis for developing 

material model representations for use in analysis. 

YIELD-STRESS MOMENT AND MOMENT OF INERTIA 

The initial yield moment of a reinforced-concrete cross section may 

be defined as the moment required for the steel in tension or the concrete 

in compression to just reach its yield limit. The reinforcement provided 

in actual construction must be governed by the former case; therefore, 

only the derivation for the under-reinforcement case (steel-in-tension 

yield) is described below, based on Reference 3. 

A typical cross section of a reinforced-concrete section is shown 

in Figure 5, and the strain diagram is shown in Figure 6 where A and A' 
s s 

are the areas of the steel reinforcement in tension and compression, 

respectively. The strain level in tension steel is £^, in concrete is 

and in compression steel is £'. The strains are related by the 

following equations: 

£t _ d - Kd _ 1 - K 
e ' " Kd 

c 

_£_^ _ d* - Kd 

e Kd 
c 
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The stresses in steel are as follows: 

o 
s 

d' 
s 

-na 
c 

1 - K 
K 

stress in tension steel 

stress in compression steel (2) 

where n = E /E , the ratio of modulus of elasticity of steel to concrete, 
s c 

Denoting the area of steel as a fraction of the area of the concrete 

section, i.e., 

A 
_s 

p ” bd 

A’ 
, _ _s 

p bd 

the equation of equilibrium becomes 

o A + o' A1 +-~o Kbd = 0 
s s s s 2 c 

This can be rewritten after some arrangement into the form 

+ 2(np + np') K - (2np + 2np* -~) =0 

Therefore the solution of K becomes 

K = \/ (2np + 2np' “j-) + (nP + up')2 - (np + np') 

The yield moment for the under reinforcement case is 

M = o A (d - ~~) + a* A' (d' ~) 
s s 3 s s 3 

or 

M = A id a 
s s 

(3) 

(4) 

(5) 
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where 

= -Hf 1 - K 
(7) 

If the solution of Equation 5 is such that K > d'/d, then the 

stress in compression steel is 

i’ - K f - K 
°s = 2noc—— = 2 _rr¥°s 

The equation of equilibrium for this case becomes 

a A + a' A' + 4- a Kbd - E £' A' = 0 
ss ss2c c s 

After some rearrangement, and the use of Equation 3, K becomes 

(8) 

(9) 

K = \l 2[np + (2n - l)p' 4- ] + [np + (2n - I)p']2 

- [np + (2n - l)p'] (10) 

The form of Equation 6 remains the same except that for this case, j is 

defined as 

j = 1 
K (2n - 1) K - 2BJ- ^ 

nCl - K) (f)(£ -t) (U) 

The transformed section moment of inertia is given by 

I = 4 Kd3 + n A (d - Kd)2 + (n - 1) A' (Kd - d')2 
c 3 s s 

02) 
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The value of I is the moment of inertia of the cracked concrete section 
c 

of width b considering the compression concrete area and steel areas 

transformed into equivalent concrete areas and computed about the centroid 

of the transformed section. may also be calculated from 

I = F bd3 (13) 
c 

The coefficient F varies as the modular ratio n and the amount of rein¬ 

forcement used. For sections with tension reinforcement only, the coef¬ 

ficient F is given in Figure 7. For other elements which are reinforced 

both in the compression and tension regions, the value of F cannot be 

obtained from any available design aids and, therefore, Ic must be 

calculated using the transformed section method as described in Equation 

13 (Reference 1). 

ULTIMATE STRENGTH MOMENT CAPACITY 

The ultimate unit resisting moment M^ 

width b with tension reinforcement only is 

of a rectangular section of 

given by 

A 
s 

where A 
s 

area of tension reinforcement, in. 

(14) 

fy = static design yield stress for reinforcement, psi 

d = distance from extreme compression fiber to centroid 

of tension reinforcement, in. 

a = depth of equivalent rectangular stress 

block = A f /0.85bf'; in. 
s s c 

b = width of compression face, in. 

f^ = static ultimate compressive strength of concrete, psi 
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The reinforcement ratio p is defined as 

(15) 

To insure against sudden compression failures, the reinforcement 

ratio p must not exceed 0.75 of the ratio which produces balanced 

conditions at ultimate strength and is given by 

P b 

0.85 K.f* 
1 c 

f 
y 

87,000 \ 

87,000 + fy/ 
(16) 

where = 0.85 for f^ up to 4,000 psi and is reduced 0.05 for each 

1,000 psi in excess of 4,000 psi. 

Figure 8 is a universal design chart giving the ultimate moment 

capacities of rectangular sections with tension reinforcement only for 

all values of p, f’, and f . 
i't c’ y 

For a rectangular section of width b with compression reinforce¬ 

ment, the ultimate unit resisting moment is 

M 
s y 

= (A - A’)f f d - 4) + A* f (d-d’) 
s y 

(17) 

where A^ = area of compression reinforcement, in. 

d' = distance from extreme compression fiber centroid of 

compression reinforcement, in. 

a = depth of equivalent rectangular stress block, in. - 

(A - A’)f /0.85 bf 
s s y c 

The reinforcement ratio p' is 

(18) 
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Equation 17 is valid only when the compression steel reaches the 

value f at ultimate strength, and this condition is satisfied when 
y 

(19) 

If p - p' is less than the value given by Equation 19 or when 

compression steel is neglected, the calculated ultimate unit resisting 

moment should not exceed that given by Equation 1A. The quantity p ~ p' 

must not exceed 0.75 of the value of p^ given in Equation 16. 

MODULUS OF ELASTICITY 

The modulus of elasticity of concrete E^. may be computed by 

E 
c 

(20) 

3 
for values of w between 90 and 155 Ib/ft , where w is the unit weight of 

3 
concrete and normally equal to 145 Ib/ft . 

The modulus of elasticity of reinforcing steel Eg is 

E 
s 

29 (106) psi (21) 

The modular ratio n is 

E 
s (22) n 

E 
c 

and may be taken as the nearest whole number. 
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ACI CODE APPROACH FOR COMPUTING MOMENT OF INERTIA FOR DEFLECTION 

Since finite element analysis techniques require a characterization 

of the stiffness of the structural element, it is important to review 

several approaches for estimating moment of inertia. 

The ACI code (Reference 4) states that where deflections are to be 

computed, those which occur immediately on application of load shall be 

computed by the usual methods or formulas for elastic deflections. 

Deflections shall be computed taking the modulus of elasticity for 

concrete as specified in Equation 20 and taking the effective moment of 

inertia as follows. 

I 
c 

where 

I + 
g 

1 < I 
g 

M 
cr 

f I 
r g 

and 

f 
r 

(23) 

(24) 

1 = moment of inertia of cracked section transformed to concrete 
cr 

I = effective moment of inertia for computation of deflection 
c 

I = moment of inertia of gross concrete section about the 

g centroidal axis, neglecting the reinforcement 

M = maximum moment in member at stage for which deflection is 

a being computed 

M = cracking moment 
cr 

y = distance from centroidal axis of gross section, neglecting 

^ the reinforcement, to extreme fiber in tension 

Special provisions are included for lightweight aggregate. 
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For continuous spans, the effective moment of inertia may be taken 

as the average of the values obtained from Equation 23 for the critical 

positive and negative moment sections. 

EQUIVALENT MODULUS APPROACH FOR COMPUTING DEFLECTION 

Another approach for stiffness evaluation is the equivalent modulus 

(Reference 3). Assume that the displacements in the reinforced concrete 

structure shown in Figure 9 are in the following form: 

u(x,y,z) = 
9W(x) 

9x 
z = - W (x)z 

v(x(y,z) = 0 

w(x,y,z) = W(x) 

and the strains: 

(26) 

xx 
92W(x) 

9x2 

= - W"(x)z 

e = £ = & = £ ~ £ = 0 
zz yy xz xy yz 

Assuming that the vertical stress = 0 

(\ + 2G) £ + A(£ + £ ) = 0 
zz xx yy 

(27) 

zz (e + £.„.) = A. + 2G v xx yy A + 2G 
W"(x)z (28) 

and 

o = (A + 2G) £ + A £ 
XX XX zz 

(A + 2G) - 
A + 2G xx 

(1 - vz) 

£ = -2- £ = - -2. W" (x)z 
XX I XX I 

(29) 
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where 

D = 
El 

1 - V 

Now the moment is given by 

h/2 

M 
’/ ° 
-h/2 

XX 
z dz 

h/2 

W"(x) J z2 dz - DW"(x) 

-h/2 

From the strain distribution, Figure 10 

WCx) = 
(1 - k) d 

£t = (1 - k) dW"(x) 

Moment of the section is then given by 

M=Ajda =AidE£. 
s s s s t 

M = A jE (1 - k) dz W"(x) = DW"(x) 
s s 

Also 

D = As jEs (1 - k) d^ 
El 

(30) 

(31) 

(32) 

(33) 

(1 - v ) 

Therefore the effective E for the concrete section is given by 

E = 

As jEs(l - k) d2(l - V2) 
(34) 

where I is I . 
g 
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NAVFAC P-397 APPROACH FOR COMPUTING MOMENT OF INERTIA FOR DEFLECTION 

A third approach to stiffness is given in NAVFAC P-397 (Reference 

1). The determination of the deflection of a reinforced concrete member 

in the elastic and elasto-plastic ranges is complicated by the fact that 

the effective moment of inertia of the cross section along the element 

changes continually as cracking progresses, and further by the fact that 

the modulus of elasticity changes as the stress increases. Reference 1 

recommends that the computation of deflections use the average moment of 

inertia I 
a 

I + 1 
l = _8_(35) 
a 2 

where I = moment of inertia of the gross concrete cross section of 
g 

width b about its centroid (neglecting steel areas) and is equal to 

I 
g 

(36) 

where I is the cracked moment of inertia from Equation 13. The modulus 
c 

of elasticity shall be that of the concrete as defined by Equation 20. 

MODEL REINFORCED CONCRETE BEAMS 

To study strength-reduction direct models and their ability to 

reproduce prototype structural behavior, a series of model beam tests 

had been previously conducted (Reference 5). The model beams were 

selected from prototype beam tests conducted at the Portland Cement 

Association Laboratory (Reference 6) and the University of Illinois 

(Reference 7). Models were selected to reproduce tension failures, 
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compression failures, and shear failures. The beams were selected for 

this study because the number of test specimens of both model and proto¬ 

type gave high reliability to the test results. This section will 

describe the experimental test results. 

Tension Failures 

A series of prototype beams was selected from which strength- 

reduction models were made (Figures 11 and 12). The strength-reduction 

models were able to reproduce the proper crack pattern and mode of 

failure. The average failure load of the model beams was 5% above the 

scaled prototype value. Typical deflection curves are shown in Figure 

13. 

Compression Failures 

A model of a prototype beam (Reference 6) failing in compression 

was constructed in a procedure similar to the beams with tension failures. 

The length scale factor was set at 8 to permit reuse of the forms, and 

the strength scale factor was determined to be 3.7 based on the yield 

point of the model reinforcement (Figure 14). The results of the test 

(Figure 14) indicate ultimate loads approximately 9% higher than those 

scaled from the prototype. This in part may be caused by a minor model¬ 

ling dissimilarity in the the choice of reinforcing steel in the model 

(see Reference 5). 

Shear Failures 

The fourth set of strength-reduction models, consisting of two 

series of tests, attempted to reproduce shear failure. This series 

(Figure 15) was successful in reproducing a shear failure with loads 

approximately 7% higher than the scaled prototype values. 
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ANALYSIS BY EQUIVALENT BEAM 

The objective of the analysis was to duplicate the load-deflection 

history observed in test data and to duplicate failure loading to deter¬ 

mine ultimate resistance. The nonlinear finite element program ADINA 

(Reference 8) was used for this comparison. Beam elements were selected 

as the most direct technique to represent the test beams, using an 

elasto-plastic material model. The material model for elasto-plastic 

beams requires definition of a rectangular section, elastic modulus, 

Poisson's ratio, and yield stress. The decision was made to use the 

actual beam cross section dimension thus implicitly specifying a gross 

moment of inertia. 

Tension Failure 

There were three choices for determination of stiffness namely: 

(1) ACI approach using Equation 23, to determine effective Ic and 

concrete modulus 

(2) NAVFAC P-397 approach using Equation 35 to determine average Ig 

and concrete modulus and 

(3) Equation 34 to determine effective E and gross I. 

The results of 1 and 3 (curve 1, Figure 16) were identical; however 2 

gave a stiffness 1.28 times greater (curve 2, Figure 16). The program 

ADINA utilizes gross section moments of inertia and therefore adjusted 

moduli were input. Figure 16 shows a comparison between test data and 

computer solution. The conclusion in this case is that gross moment of 

inertia is effective only at very low loads (less than 10% of ultimate 

moment). The use of cracked moment of inertia is a better representation 

of behavior. 
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The program solution fails to achieve equilibrium at the point (A) 

of yielding. Use of the equilibrium check terminates the solution at 

this point. Omission of the equilibrium check allows continuation of 

the solution up until the point of solution instability. Further refine¬ 

ment of the time step allowed the problem to be solved with the equili¬ 

brium check active; results were the same as the preceding. Nonlinear 

solutions resemble dynamic problems in that small time steps are required 

to preserve equilibrium balance. However, no rule has been developed to 

guide in time step selection. Omission of equilibrium check resulted in 

solutions of acceptable accuracy in these problems. 

Compression Failure 

The cracked moment of inertia was used to estimate stiffness. 

Results are shown in Figure 17. As above the solution terminated pre¬ 

maturely when the equilibrium check was utilized with a 25 step solution. 

The solution without equilibrium check terminated with a stiffness 

matrix not being positive-definite at the point when a full plastic 

moment developed at mid-span indicating a failure mechanism. It is 

important to note that the finite element representation does not give 

any indication of the type of failure or stress condition in the actual 

beam. Thus it is necessary to analyze the actual section to determine 

its failure mode. Initial observation would be misleading and indicates 

a tension failure having large yield capacity. The actual failure was a 

sudden brittle compression failure. 

Shear Failure 

The cracked moment of inertia was used to estimate the stiffness. 

Results are shown in Figure 18. The stiffness in this analysis is 

greater than the actual. This is a limitation of an elasto-plastic 

model when the beam exhibits early nonlinearities. Although the initial 

stiffness is in agreement, the overall stiffness is about half that 

originally estimated based on a cracked section. This is attributed to 
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the shear mode of failure. The results of the analysis show that the 

shear stress of the cross section, would be exceeded. However, the user 

must adjust the results since no internal failure mechanism exists for 

shear. The exact occurrence of the point of shear failure is unknown 

since the beam computationally "yields" rapidly between 400 and 405 lb 

and the exact failure shear stress is not known. The burden is placed 

upon the user to note shear failures since the solution will proceed. 

This is a critical limitation in cases of multicomponent structures 

since the solution would not be valid past the point of shear failure. 

It is possible to utilize a displacement loading function rather 

than a force loading function. This could be accomplished by stiff 

springs at load points and reactions and a corresponding high force to 

induce displacement. The relative stiffness of the beam is small in 

comparison to the springs, and essentially adds no additional resistance. 

Thus deflections are induced to the beam and reactions computed to 

evaluate loading. This approach allows for load drop-off with increasing 

deflection beyond ultimate. Test procedures generally utilizing load 

machines induce displacement into the structure during loading. The 

result gives a reduction of load capacity beyond ultimate with the 

member continuing to deflect until collapse. Actual service conditions 

usually impose a constant loading. However, it is limited to simple 

loading conditions involving concentrated loads. This limits its useful¬ 

ness. Figure 18 shows results including the drop-in load for the shear 

beam failure beyond failure. 

Results indicate a more detailed analysis is required to properly 

evaluate the inelastic behavior beyond yielding. 

MATERIAL MODELS FOR COMPOSITE REPRESENTATION OF REINFORCED CONCRETE 

The previous section demonstrated that the use of beam elements was 

not totally satisfactory in predicting the mode of failure. A higher 

order of modeling utilizing an independent representation of concrete 

and reinforcement has potential for predicting failure mechanisms more 

realistically. 

16 



The direct modeling of concrete requires use of plastic material 

relationships. Various types of nonlinear material properties have been 

in use. The more common will be reviewed here. 

Variable Modulus Model 

This model is an attempt to provide for changes in the material 

strength parameters with volumetric strain history (Reference 9). The 

incremental stiffness parameters of bulk modulus K and shear modulus G, 

and unloading modulus are input as functions of volumetric strain. This 

allows for variation of Poisson's ratio with load. This model does not 

have a formal yield or failure criterion. Tensile limits may or may not 

be incorporated. As soon as the tensile stress at an integration point 

exceeds a reference stress the normal stiffness and shear stiffness 

across the failure plane are multiplied by reduction factors. 

Tresca Yield Condition Maximum Shear Theory 

This condition asserts that yielding occurs when the maximum shear 

stress reaches the prescribed value Cy (Reference 10). Mathematically, 

the condition is expressed in its simplest form when given in terms of 

principal stresses. Thus for > 0^ > the Tresca yield condition 

is given as 

-|(oI - am) = Cy (a constant) (37) 

To relate the yield constant Cy to the yield stress in simple tension 

Oy, the maximum shear in simple tension at yielding is observed (by 

Mohr’s circles of Figure 19a, for example) to be CTy/2. Therefore when 

referred to the yield stress in simple tension, Tresca's yield condition 

becomes 
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(38) 
°I ’ “ill = “Y 

The yield point for a state of stress that is so-called "pure shear" may 

also be used as a reference stress in establishing the yield constant 

Cy. Thus if the pure shear yield point value is k, the yield constant 

Cy equals k (again the Mohr's circles clearly show this result, as in 

Figure 19b), and the Tresca yield criterion is written in the form 

°I " CTIII = 2k (39) 

For the biaxial state of stress, Figure 20 shows the stress condition. 

In this case cr^j = 0. The Tresca yield condition is the linear segments. 

The von Mises' yield condition is shown by the ellipse. This will be 

discussed in the next section. 

Von Mises' Yield Condition (Distortion Energy Theory) 

This condition asserts that yielding occurs when the second deviator 

stress invariant attains a specified value (Reference 10). Mathematically, 

the von Mises' yield condition states 

fai ‘ °ii)2 + (an " ani)2 + (ain " ai^2 = 6cy 

With reference to the yield stress in simple tension, it is easily shown 

that Equation 40 becomes 

(0I ” CTjj)2 + (Ojj - CTjn)2 + (0ni “ 0j)2 = 20y2 (41) 
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Also, with respect to the pure shear yield value k, von Mises' condition 

Equation 40 appears in the form 

(°T °n>2 + 
(o 

II - °m)2 + (o 
III 

x 4 

~ Oj) = 6k (42) 

For a biaxial state of stress the von Mises' yield condition becomes 

aiam + a 
III 

which is the ellipse 

(43) 

(44) 

The von Mises' model is specified in terms of Young's modulus, Poisson's 

ratio, yield stress, and strain hardening modulus. Two variations of 

hardening may occur--isotropic and kinematic hardening. 

A stress space is established by using stress magnitude as the 

measure of distance along the coordinate axes. In the Haigh-Westergaard 

stress space of Figure 21 the coordinate axes are associated with the 

principal stresses. Every point in this space corresponds to a state of 

stress, and the position vector of any such point ,0^ ,(7^j) may be 

resolved into a component OA along the line OZ, which makes equal angles 

with the coordinate axes, and a component OB in the plane (known as the 

II-plane) which is perpendicular to OZ and passes through the origin. 

The component along OZ, for which Oj = an = 0ni> rePresents hydro¬ 

static stress, so that the component in the Il-plane represents the 

deviator portion of the stress state. It is shown that the equation of 

the II-plane is given by 
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0 (45) 
al + all + 

a 
III 

In stress space, the yield condition ^2^°I ,CJII = ^Y’ t^e^:*-nes 

the so-called yield surface. Since the yield conditions are independent 

of hydrostatic stress, such yield surfaces are general cylinders having 

their generators parallel to OZ. Stress points that lie inside the 

cylindrical yield surface represent elastic stress states, those which 

lie on the yield surface represent incipient plastic stress states. The 

intersection of the yield surface with the II-plane is called the yield 

curve. 

In a true view of the II-plane, looking along OZ toward the origin 

0, the principal stress axes appear symmetrically placed 120° apart as 

shown in Figure 22a. The yield curves for the Tresca and von Mises1 

yield conditions appear in the II-plane as shown in Figure 22b and c. 

In Figure 22b, these curves are drawn with reference to Equations 37 and 

40 using the yield stress in simple tension as the basis. For this 

situation, the von Mises' circle of radius ^2/3 CJy is seen to circumscribe 

the regular Tresca hexagon. In Figure 22c, the two yield curves are 

based upon the yield stress k in pure shear. Here the von Mises' circle 

is inscribed in the Tresca hexagon. 

The assumption of isotropic hardening under loading conditions 

postulates that the yield surface simply increases in size and maintains 

its original shape. Thus in the II-plane the yield curves for von 

Mises' and Tresca conditions are the concentric circles and regular 

hexagons. 

Continued loading after initial yield is reached leads to plastic 

deformation which may be accompanied by changes in the yield surface. 

For an assumed perfectly plastic material, the yield surface does not 

change during plastic deformation and the initial yield condition remains 

valid. This corresponds to the one-dimensional perfectly plastic case 

(isotropic). For a strain hardening material, however, plastic deforma¬ 

tion is generally accompanied by changes in the yield surface. To 
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account for such changes it is necessary that the yield function 

= 0 be generalized to define subsequent yield surfaces beyond the initial 

one. A generalization is effected by introduction of the loading func¬ 

tion 

< <‘VEi/’K) = 0 
(46) 

which depends not only upon the stresses, but also upon the plastic 

strains £..P and the work-hardening characteristics represented by the 

parameter K. Equation 46 defines a loading surface in the sense that f 

= 0 is the yield surface, f* < 0 is a surface in the (elastic) region 

inside the yield surface and f* > 0, being outside the yield surface, 

has no meaning. 

In kinematic hardening, the initial yield surface is translated to 

a new location in stress space without change in size or shape. Thus a 

yield constant defining an initial yield surface is replaced by 

f. (a. . - or. .) = 
1 ij iJ 

(47) 

where the a . are coordinates of the center of the new yield surface, 
ij 

If linear hardening is assumed, 

P 
a. . - c£ . . 
id 

where c is a constant. 

(48) 
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Drucker-Prager Model 

It is convenient to derive relationships which are based upon terms 

that are independent of axis orientation. There are functions of the 

stress or strain tensors which have the same definition regardless of 

the coordinate system in which they are defined. They are called the 

stress or strain "invariants" (Reference 9). The stress invariants may 

be defined as: 

J, = a.. = a +a +a 
1 n xx yy zz 

J„ = -iTa,. a.. - a. . a.. 
2 2Ln JJ ij Jij 

2 2 
- a o + a a + a o -a -a -a 

xx yy yy zz zz xx xy yz zx 

(49) 

(50) 

where and are defined as the first and second stress invariant 

respectively. The first invariant of the stress tensor equals three 

times the average hydrostatic stress or pressure. The first invariant 

is generally used in constitutive relationships to introduce the influence 

of volumetric or hydrostatic effects. The shearing, or deviatoric 

portion of the stress or strain tensor is referred to as the deviatoric. 

The invariants of the deviatoric are distinguished by primes. The first 

invariant of the stress deviatoric, = 0 indicating the absence of 

volumetric effects. The second invariant of the stress deviatoric, , 

is defined as: 

T' 
2 

^[(o - a )2 + (a 
6 L xx yy yy 

2 2 2 
+ o + a + a 

xy yz zx 

a )2 + 
zz (0, zz 

(51) 
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This is a function of the maximum shearing stresses. It is also 

related to the shear stress acting on the octahedral plane which is the 

plane perpendicular to a line equidistant from the 3 major axes in 

principle stress space. The normal and shear stresses acting on this 

plane are defined as: 

tVKi - °22)2 + (°22 - °33)2 + (a33 ' aU)2 

The second invariant of the deviatoric is generally used to provide 

an axis-independent means of introducing the influence of shearing 

behavior. 

Once plastic deformation is initiated, the constitutive equations 

of elasticity are no longer valid. Because plastic strains depend upon 

the entire loading history of the material, plastic stress-strain relations 

very often are given in terms of strain increments - the so-called 

incremental theories. By neglecting the elastic portion and by assuming 

that the principal axes of strain increment coincide with the principal 

stress axes, the Levy-Mises equations relate the total strain increments 

to the deviatoric stress components through the equations 

a 
oct 

oct 

de. . = s..dA 
ij iJ 

(53) 

Here the proportionality factor dA appears in differential form to 

emphasize that incremental strains are being related to finite stress 

components. The factor dA may change during loading and is therefore a 

scalar multiplier and not a fixed constant. Equation 53 represents the 

flow rule for a rigid-perfectly plastic material. 

If the strain increment is split into elastic and plastic portions 

according to 
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(54) 

and the plastic strain increments related to the stress deviator components 

by 

de.= s..dA 
ij iJ 

(55) 

the resulting equations are known as the Prandtl-Reuss equations. 

Equation 55 represents the flow rule for an elastic-perfectly plastic 

material. They provide a relationship between the plastic strain incre¬ 

ments and the current stress deviators but do not specify the strain 

increment magnitudes. 

The theories of plasticity utilized are generally limited to isotropic 

incremental flow theories for isotropic time-independent materials 

subjected to small strains under isothermal conditions (Reference 9). 

Yielding is generally defined to occur at some experimentally observed 

stress state. For example, a von Mises yield condition limits the 

square root of the second invariant of the stress deviatoric to some 

constant value, A. 

(56) 

For the Drucker-Prager yield condition the maximum shear stress is 

related to some function of the volumetric stress, 

^ = A + a (50 

where A and a are constants and the square root of is generally used 

to maintain units of stress. For the uniaxial strain or the triaxial 

shear test, 
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4^ 
3P (58) (a, - <j0) and J. = o, ♦ 2o3 

The square root of the second invariant of the stress deviatoric, 

may be plotted against P (equal to one-third the value of the first 

stress invariant, J^) in order to evaluate A and a. 

A straight line approximation for A and a in terms of cohesion, c, 

and friction angle, (f1, from a Mohr-Coulomb diagram, are: 

A = 
6c cos (J1 

a 
2 sin ({> 

(3 - sin <|>) V 3 (3 - sin 0) 

On an incremental basis the flow rule may be specified as: 

P , a <t> 

(59) 

£ . . 
1J 

= k 
a a. . 

1J 

(60) 

The dot denotes an incremental relationship. The \ represents a 

non-negative scalar factor of proportionality (Reference 9). It is not 

a characteristic constant of the material. It is an arbitrary factor 

relating the energy dissipated in plastic flow to the work done by the 

external load. The 4> is the plastic potential function. When <t> is 

identical to the yield condition, for example in the Drucker-Prager 

failure theory, then: 

<P - - A - aJ1 = 0 (61) 

and the flow rule is called "associated." Otherwise it is a non-associated 

flow rule (Reference 9). 

Figure 23 shows the Drucker-Prager material model. Murtha and 

Crawford (Reference 11) demonstrate that A and a can be computed directly 

for concrete. This means all of the measured data is included in the 
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calculation of A and a and that no dependence on parameters c and <J> is 

necessary. This is accomplished by computing and at intervals of 

0.2 along the o^/f' axis. Values of o,/f' (i = 1, 2, 3) were computed 

for various points on the curves and from these values and were 

computed. The results are shown in Figure 24 where A = 0.48 F and a = 

0.09. In effect, Figure 24 demonstrates that the Drucker-Prager Model 

matches the envelopes of concrete in the compression quadrant. 

Using Equation 59 to derive an equivalent 0 and c gives 0 = 12.5° 

and c = 0.395 f1. 
c 

Mohr-Coulomb 

The generalized Mohr-Coulomb behavior may be used to produce the 

following failure law for compression-compression zone. 

.2 a 

where 8, o and CT are material constants. For biaxial stress Kupfer 
o 

(References 11 and 12) evaluated these constants as 

p = '\/T ; a = 1/5 f 73 
c 

o 

In the tension-compression zone and tension-tension zones, failure may 

be defined by a series of straight lines based on the tensile strength 

of concrete. 

ADINA Concrete Model 

The failure criterion for this model is based on experimental data. 

Figure 25a and b show the form of input used to define this model. The 

basis for the model is the triaxial representation of experimental data 

(Reference 8) expressed in variable modulus format. 
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Unlike the Mohr-Coulomb or the Drucker-Prager plasticity models, 

once the stress state has reached its specific crushing point (£c, 

Figure 25), the stiffness of the material in all directions is reduced 

and all stresses are released. This model also allows a gradual reduction 

of stiffness with increasing stress. 

CONCRETE BEHAVIOR 

References 2, 12, 13, 14, 15, and 16 discuss concrete material 

properties. Figures 26 and 27 show the biaxial strength of concrete. 

It is obvious that the tensile strength is significantly weaker than the 

compressive strength. Figure 28 shows uniaxial and biaxial and lateral 

strain from two sources that are in general agreement. Figure 29 shows 

triaxial test data in compression. Figure 30 gives triaxial concrete 

strength for ratios of stress. This information is utilized in the 

ADINA concrete model. 

MATERIAL MODELS AVAILABLE IN ADINA TO REPRESENT CONCRETE 

Figures 31 and 32 show the material models available in ADINA 

possible for use in modeling concrete. As can be seen from the preceding 

discussion, a tension cutoff is essential to attempt to define failure 

of an element; only the variable modulus model and the concrete model 

incorporate this feature. Both the Drucker-Prager and von Mises models 

may satisfactorily represent the model in compression; however, they 

lack definition in the tensile region. 

COMPOSITE MODEL ANALYSIS USING ADINA 

A finite element model was prepared in which the concrete was 

represented by 2-dimensional quadrilateral elements and the reinforce¬ 

ment by truss elements. The steel reinforcement was modeled using the 
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elasto-plastic model. The concrete was modeled both by the ADINA Concrete 

Model and in another separate solution by the Variable Modulus Model. 

Results for the compression failure are shown in Figure 33. The concrete 

model was quite successful and predicted concrete crushing in the central 

compressive region. This run was quite satisfactory. The variable 

modulus model results did not indicate compression failure; thus its 

results, although capable of tracking the load deflection behavior, do 

not give an insight into failure. Further the material parameters are 

more suited toward soil mechanics analysis than reinforced concrete 

analysis. 

Figure 34 shows the load deflection curve for an analysis of model 

beam 3 which failed in shear using the concrete model in ADINA. Agree¬ 

ment is very good. The model exhibited considerable cracking. Final 

failure was caused by concrete crushing. The interpretation or designa¬ 

tion of a shear failure is not made by the program, although it is 

possible to reconstruct a failure mechanism from the description of 

cracking and crushing. Further work using ADINA utilized the concrete 

model since it best represented concrete behavior. 

FURTHER STUDIES USING COMPOSITE MODELS 

Two beams were selected from Reference 7 for which there were load 

deflection data. Both beams were identical except that one beam had 

stirrups, the other had none. As before, using ADINA, reinforcement was 

modeled using truss elements. In this case this included both the 

longitudinal reinforcement as well as the stirrups. Figure 3a shows the 

results. Curve A shows results using the default value of the parameter 

for shear stiffness reduction of 0.5. Curve B shows results of reducing 

the shear stiffness reduction parameter equal to 0.01. Variations were 

made in the ADINA Concrete Model parameter Alpha (unloading ratio) but 

were found to have no effect on the solution, Curve A. 
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Figure 36 shows the results for the beam with stirrups. The parameters 

used in this example were the same as those used for Curve A of Figure 

35. It may be seen that both Curve A, Figure 35, and Figure 36 give 

excellent agreement with the loading path of both beams. The results 

suggest stirrups can be modeled using truss elements with the ability to 

reproduce stiffness behavior. However, both examples display significantly 

more ductility than was observed in the actual beams. The absence of a 

failure mode cutoff in shear as discussed above can give results which 

grossly overestimate ductility. This is extremely important in estimating 

the dynamic response of structures. Variations were made in concrete 

failure strain and although these varied the load path, it did not alter 

the excessive ductility problem. 

Figure 37 describes a beam-column with results of direct model 

(Reference 5) and prototype tests (Reference 6). The test specimens 

were modeled for finite element analysis in a similar way to previously 

described work. This study case is intended to evaluate the thrust-moment 

interaction failure mode. As a failure mode, it is a difficult test of 

the finite element procedure since it depends directly on the ability of 

the program to define a failure condition. Results are given in Figure 

38. The initial results without equilibrium check overestimate failure 

thrust-mount. Use of stiff spring techniques for loading did not improve 

results. With the equilibrium - condition - check active results approached 

the range of acceptable solution as the load increment was reduced. The 

results indicate that it is possible to obtain a good approximation of 

failure thrust-moment however, the user must insure sufficiently small 

load steps to preserve equilibrium balance. 

CONCRETE MATERIAL MODEL PROGRAM SINGER 

Program SINGER (Reference 17) is a finite element program which is 

formulated to solve for equilibrium by the minimization of the work 

function. The program is intended for reinforced concrete 2D elements 

simulating the actual nonlinear behavior including crushing, spalling, 
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etc., under both states and dynamic loads. Dynamic loads are treated by 

time step solution at selected points in time. The state of the system 

is defined by the work function which contains all of the forces acting 

on the system. The reinforced concrete beam-column is represented by a 

gross element model (a one-dimensional idealization). Axial and flexural 

deformations are modeled explicitly. Inelastic deformations are modeled 

up to element failure. The coupling of axial and flexural distortions 

is represented by nonlinear terms in the strain-displacement relation. 

Also included is the variability of neutral axis. The constitutive laws 

model the behavior of concrete, both confined and unconfined, and rein¬ 

forcing steel. 

The numerical energy evaluation is based on the discretization of 

the energy stored in the element. It involves two principal tasks: 

1. The computation of the internal-energy density at a discrete 

number of points in the element. 

2. The integration of the internal-energy density over the volume 

of the element. 

The computation of the internal-energy density during the solution 

process of a typical time step, from t^ to t^, is described with the aid 

of Figure 35. The term t^ corresponds to the time at which the last 

equilibrium state of the system has been obtained, and denotes the 

time at which the next equilibrium state is sought. The stress-strain 

curves in Figure 35 govern the behavior of a discrete point of the 

element. The terms and denote strains at t^ and t^, respectively; 

both loading (e2 > and unloading (e2 < e^) cases are illustrated. 

The internal-energy density at time t^ is 

U* = U* + Uj* (63) 
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where 

represents the internal-energy density at tp and 

1 

>0 if £„ > £1 

<0 if £2 < el 
(64) 

represents the change in the internal-energy density during the time 

step tp tp It follows from Figure 39 that for a given value of strain 

Cp there corresponds a unique value of stress. Consequently, the 

internal-energy density, and hence the internal energy, is uniquely 

defined by the strain state, which in turn is a unique function of the 

displacement state. Hence, in the neighborhood of an equilibrium state, 

the internal energy of the system is a unique function of the generalized 

coordinates. This is a major difference between this model and other 

models. The formulation by the energy approach allows for negative 

moduli values not possible in stiffness formulation methods. Consequently, 

the material stress-strain model in Figure 40 may be used to represent 

concrete past ultimate loading. A distinction is made between confined 

concrete and unconfined concrete. Figure 41 shows the results of rectangu¬ 

lar prisms under concentrated load. The line represents values for use 

in flexure; p" is the ratio of volume of lateral reinforcement to the 

volume of confined concrete; fy" is the reinforcement yield stress. The 

possible SINGER failure criteria considered are given here: 

1. Flexural Failure 

a. Concrete Crushing 

b. Steel Fracture 

c. Bar Buckling and Concrete Crushing Simultaneously 
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2. Shear-Flexure Failure 

a. Detection of the Principal Diagonal Crack Leading to Failure 

b. Detection of the Principal Diagonal Crack Plus Yielding 

of the Web Reinforcement Leading to Failure 

3. Axial Force Failure 

a. Concrete Crushing: la failure criteria applies 

b. Steel Fracture: lb failure criteria applies 

c. Bar Buckling and Concrete Crushing Simultaneously: 

1c failure criteria applies 

ANALYSIS OF BEAMS USING SINGER 

The compression failure and shear failure beams were studied using 

Program SINGER. Figure 43 shows the load-deflection diagram for the 

compression failure case. The program gives a reasonable approximation 

of the resistance function. However, the solution did not terminate 

with the failure of the member. The printed output gives a description 

of concrete crushing, cracking, and yielding indicating compression 

failure. This is extremely useful in interpreting beam behavior. 

A major disadvantage of this program is its high cost, approximately 

six times the ADINA runs. The program thus is limited to those problems 

where the detailed modeling of reinforcement, stirrups confined and 

unconfined concrete is essential. 

The shear failure beam was also analyzed using SINGER. Figure 43 

gives the load deflection diagram. Results are quite good. The deflec¬ 

tion increased rapidly at the failure load and the printed output indicated 

a diagonal tension failure. 
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The preceding examples demonstrate the capability of the SINGER 

composite model to accurately represent the load deflection of reinforced 

concrete elements. The only technical limitation is that the solution 

process does not terminate at failure but rather continues indicating 

large deflection (excessive ductility). This may be a limitation with 

multi-component structures in evaluating actual load carrying capacity 

and ductility. 

ANALYSIS OF BEAM USING MARC 

Program MARC is a nonlinear finite element program. The program 

contains a wide assortment of element types and to simplify input, mesh 

generators are available. The format for the program is very general, 

being keyed by word descriptors. An interesting feature of this program 

is that there is a 2D and 3D reinforcement element which is capable of 

being used with 2D plane strain elements and 3D plane strain elements. 

The element is described as a hollow element which contains reinforcing 

bars in an arbitrary orientation. The reinforcing bar element overlays 

the concrete element allowing for a generalized placement of reinforcing 

much less dependent on mesh configuration. Unfortunately serious limita¬ 

tions presently exist in the code. Nonlinear elasticity material models 

are limited to von Mises and Mohr-Coulomb. A concrete model is available 

for axisymmetric and shell analysis. Unfortunately, only one type of 

material model may be used in any problem. This thus restricts reinforce 

ment behavior when used in conjunction with the concrete model. Present 

usage of this code requires payment of a royalty; thus costs of usage 

are more than double those by ADINA. 

Several variations of the shear beam were prepared. Cracking is 

essential to the solution of this problem. This restricts the choice of 

elements to the axisymmetric 8-node quad. A large radius was used to 

consider an essentially plane problem. The reinforcement must follow 

the same material model as the concrete; this is clearly a limitation. 

Results are shown in Figure 44. 
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CONCLUSIONS 

The following conclusions from the study are made: 

1. Cracked moment of inertia and concrete modulus best represent 

the stiffness of a concrete section modeled by beam elements. This has 

an advantage over modified modulus techniques, particularly when axial 

load is included. 

2. Use of beam elements may not represent shear and compression 

failure modes. The user must check for these failures. 

3. Composite steel/concrete modeling techniques can be used success¬ 

fully to model tension, shear and compression failure modes, however, 

the user must carefully analyze results. 

4. The ADINA Concrete Model produces excellent agreement in track¬ 

ing load deflection behavior and is recommended over the others. 

5. The composite model may overestimate the ductility of reinforced 

concrete when shear and compression failures occur. Care must be taken 

to ensure sufficiently small load increments. 

6. Nonlinear problems, like dynamic problems, require a small time 

step to preserve equilibrium balance. 

7. Program SINGER has the capability for detailed modeling using 

beam element representation. This program is capable of providing 

insight into failure modes. However, it is relatively costly to use. 

8. Program MARC does not appear to have any advantage over ADINA. 
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RECOMMENDATION 

Further work is recommended in defining failure in terms of duct¬ 

ility, mode of behavior and reduction in load capacity. The functional 

utility of the structural member must be quantified in the post ultimate 

load range. 
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Figure 3. Typical Stress-Strain Curves for Reinforcing Steel 
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Figure 4. Typical Stress-Strain Curve for Concrete 
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Figure 5, Reinforced concrete section. 
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Figure 9 Reinforced concrete section 

Figure 10. Strain distribution. 
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Strength scale factor, 0 - 3.7 

Type of failure—tension 

Design Data 

Prototype Model 

L (in.) 

b (in.} 

d' (in.) 

d (in.) 

As (in.2) 

fy (psi) 

fg (PS!) 

2 P (lb) 

135 

8 

16 

14.2 

2 no. 7 
1.20 

85,000 

4,360 

59,200 

16.87 

1 

2 

1.77 

2 12 gage 
0.0187 

23,000 

1,180 

260 

Test Results 

Model Material 
Actual f^ 

(psi) 

Failure 
Load 
Ob) 

Failure 
Mode 

Deviation 

(%) 

B-2-1 

B-2-2 

B-2-3 

B-2-4 

B-2-5 

microconcrete 

microconcrete 

microconcrete 

gypsum 

gypsum 

1,401 

1,401 

1,401 

1,156 

1,156 

288 

290 

252 

270 

264 

tension 

tension 

tension 

tension 

tension 

+10 

+11 

-2 

+4 

+2 

Figure 12t Design data and test results for beam 1. 
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Strength scale factor, /3 = 3.7 

Type of failure—compression 

Design Data 

Prototype Model 

L (in.) 

b (in.) 

d' (in.) 

d (in.) 

As (in.2) 

fy (psi) 

fc (psi) 

2P (lb) 

135 

8 

16 

13.4 

8 no. 6 
3.52 

86,400 

4,470 

101,800 

16.87 

1 

2 

1.67 

8 12 gage 
0.055 

23,000 

1,195 

425 

Test Results 

Model Material 
Actual f^ 

(psi) 

Failure 
Load 
(lb) 

Failure 
Mode 

Deviation 
(%) 

B-3-1 

B-3-2 

B-3-3 

B-3-4 

B-3-5 

microconcrete 

microconcrete 

gypsum 

gypsum 

gypsum 

1,400 

1,400 

1,165 

1,165 

1,165 

440 

435 

506 

511 

538 

compression 

compression 

compression 

compression 

compression 

+4 

+4 

+ 10 

+11 

+17 

Figure 14. Design data and test results beam 2. 
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Length scale factor, a = 6 

Strength scale factor, j3 = 2 

Type of failure—shear 

Design Data 

Prototype Model 

L (in.) 

b (in.) 

d' (in.) 

d (in.) 

As (in.2) 

fy (PSi) 

f' (psi) 

2 P (lb) 

120 

6 

12 

10.75 

2 no. 7 
1.20 

45 to 50,000 

5,970 

24,000 

20 

1 

2 

1.62 

4 12 gage 
0.0333 

24,000 

1,490 

333 

Test Results 

Model Material 
Actual f^ 

(psi) 

Failure 
Load 
(lb) 

Failure 
Mode 

Deviation 

(%) 

B-4-1 

B-4-2 

B-4-3 

B-4-4 

B-4-5 

B-4-6 

microconcrete 

microconcrete 

microconcrete 

gypsum 

gypsum 

gypsum 

1,489 

1,489 

1,489 

1,428 

1,428 

1,428 

342 

364 

370 

349 

360 

360 

shear 

shear 

shear 

shear 

shear 

shear 

+3 

+9 

+11 

+5 

+8 

+8 

Figure 15, Design data and test results for beam 3, 
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Figure 16 Load- Deflection curve for Tension failure 
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Figure 17 Load - deflection curves for compression failure. 
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Figure 18 Load - deflection curves for shear failure. 
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Figure 19. Tresca yield condition. 

Figure 20. Comparison of Tresca and Von Mises yield condition. 
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Figure 21 Pi Plane. 

Figure 22. Yield surface. 
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Figure 23 Druker - Prager yield condition. 
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Figure 30. Triaxial concrete strength for ratios 
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AVAILABLE 
NONLINEAR FORMULATIONS 

AVAILABLE 

material models 

a. LINEAR ANALYSIS 

b. MATERIALLY NONLINEAR ONLY 

c UPDATED LAGRANGIAN WITH LARGE 
DISPLACEMENTS BUT SMALL STRAINS 

a. 

b. 

ISOTROPIC LINEAR ELASTIC 

ELASTIC-PLASTIC (PERFECTLY- 
PLASTIC OR ISOTROPIC STRAIN 
HARDENING, RECTANGULAR AND 
PIPE SECTION) 

Figure 31, Beam elements. 
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AVAILABLE 
NONLINEAR FORMULATIONS 
a. LINEAR ANALYSIS 

AVAILABLE 
MATERIAL MODELS 

a. ISOTROPIC LINEAR ELASTIC 

b. MATERIALLY NONLINEAR ONLY b. ORTHOTROPIC LINEAR ELASTIC 

c. UPDATED LAGRANGIAN c. ISOTROPIC THERMO-ELASTIC 

d. TOTAL LAGRANGIAN d. CURVE DESCRIPTION NONLINEAR MODEL 
FOR ANALYSIS OF GEOLOGICAL MATERIALS 
(INCLUDING TENSION CUT-OFF AND 
TENSION RELEASE)(plane strain and 
axisymmetric only) 

e. CONCRETE MODEL (INCLUDING CRACKING 
AND CRUSHING) 

f. ISOTHERMAL PLASTICITY MODELS; 
VON MISES YIELD CONDITION (ISOTROPIC 
OR KINEMATIC HARDENING) OR DRUCKER- 
PRAGER YIELD CONDITION 

g, THERMO-ELASTIC-PLASTIC and CREEP MODELS 
VON MISES YIELD CONDITION (ISOTROPIC 
OR KINEMATIC HARDENING) 

h. ISOTROPIC NONLINEAR ELASTIC, INCOM¬ 
PRESSIBLE (MOONEY-RIVLIN MATERIAL) 
(plane stress only) 

Figure 32, Two-dimensional plane elements. 
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a Concrete model 

b Variable modulus model 

Figure 33 Load - deflection for compression failure beam 
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a Solution terminated stiffness not positive definite 

Figure 34. Load-deflection curves for shear failure. 
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Figure 35 Results for beam without stirrups. 
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Figure 36 Results for be am with stirrups. 
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Length scale factor, Ct = 10 

Strength scale factor, |3 = 1/1.45 

Design Data 

Prototype Model 

(in.) 

d2 (in.) 

d3 (in.) 

d4 (in.) 

b (in.) 

fv (psi) 

f' (psi) 

Ds 

10 

21.5 

50 

75 

10 

46,000 

varies 

5/8 in. 

1 

2.15 

5 

7.5 

1 

46,000/30,000 

varies 

16 gage 

Test Results 

Model Type 
(p$ii 

Eccentricity, 
e 

(in.) 

Load 
(ib) 

Failure 
Mode 

Deviation 

From Scaled 
Prototype Value 

(%) 

Prototype 
Number 

c-t 
C2 

C-3 

C-4 

C-5 

C-6 

C-7 

C-8 

direct 

direct 

direct 

direct 

direct 

strength reduction 

strength reduction 

strength reduction 

5,380 

5,380 

5,380 

5,380 

5,380 

2,450 

2,450 

2,450 

0 

0.25 

0.25 

0.75 

1.25 

0 

0.25 

1.25 

3,075 

2,665 

2,740 

830 

425 

2,400 

2,125 

350 

bearing 

compression 

compression 

tension 

tension 

bearing 

compression 

tension 

-24 

-3 

O 

-8 

-1 

-17 

+20 

+ 10 

A-6-a 

A-7-a 

A-7-a 

A-9-a 

A-10-b 

B-6-b 

B-7-b 

B-10-b 

Figure 37, Design data and test results for beam-columns. 
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Figure 41. Ultimate strength for confined concrete. 
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Figure 42 Load - deflection curves compression failure(SINGER). 
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Figure 43 Load - deflection curves shear failure(SINGER) 

77 



L
o
a
d
 2
P
 (
p
o
u
n
d
s
)
 

Uncracked analysis 

Figure 44. Results of MARC analysis. 
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